Delaunay hypersurfaces with constant nonlocal mean curvature
نویسندگان
چکیده
منابع مشابه
Constant mean curvature surfaces with Delaunay ends
In this paper we shall present a construction of Alexandrov-embedded complete surfaces M in R with nitely many ends and nite topology, and with nonzero constant mean curvature (CMC). This construction is parallel to the well-known original construction by Kapouleas [3], but we feel that ours somewhat simpler analytically, and controls the resulting geometry more closely. On the other hand, the ...
متن کاملRigidity and Sharp Stability Estimates for Hypersurfaces with Constant and Almost-constant Nonlocal Mean Curvature
We prove that the boundary of a (not necessarily connected) bounded smooth set with constant nonlocal mean curvature is a sphere. More generally, and in contrast with what happens in the classical case, we show that the Lipschitz constant of the nonlocal mean curvature of such a boundary controls its C-distance from a single sphere. The corresponding stability inequality is obtained with a shar...
متن کاملConstant Mean Curvature Hypersurfaces with Constant Δ-invariant
We completely classify constant mean curvature hypersurfaces (CMC) with constant δ-invariant in the unit 4-sphere S 4 and in the Euclidean 4-space E 4 .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Mathématiques Pures et Appliquées
سال: 2018
ISSN: 0021-7824
DOI: 10.1016/j.matpur.2017.07.005